Genetic Algorithms, Operators, and Dna Fragment Assembly Machine Learning { to Appear
نویسنده
چکیده
We study diierent genetic algorithm operatorsfor one permutationproblem associated with the Human Genome Project|the assembly of DNA sequence fragments from a parent clone whose sequence is unknown into a consensus sequence corresponding to the parent sequence. The sorted-order representation, which does not require specialized operators, is compared with a more traditional permutation representation, which does require specialized operators. The two representations and their associated operators are compared on problems ranging from 2K to 34K base pairs (KB). Edge-recombination crossover used in conjunction with several specialized operators is found to perform best in these experiments; these operators solved a 10KB sequence, consisting of 177 fragments, with no manual intervention. Natural building blocks in the problem are exploited at progressivelyhigher levels through \macro-operators." This signiicantlyimproves performance.
منابع مشابه
Hybrid algorithms for Job shop Scheduling Problem with Lot streaming and A Parallel Assembly Stage
In this paper, a Job shop scheduling problem with a parallel assembly stage and Lot Streaming (LS) is considered for the first time in both machining and assembly stages. Lot Streaming technique is a process of splitting jobs into smaller sub-jobs such that successive operations can be overlapped. Hence, to solve job shop scheduling problem with a parallel assembly stage and lot streaming, deci...
متن کاملNew Formulation and Solution in PCB Assembly Systems with Parallel Batch processors
This paper considers the scheduling problem of parallel batch processing machines with non-identical job size and processing time. In this paper, a new mathematical model with ready time and batch size constraints is presented to formulate the problem mathematically, in which simultaneous reduction of the makespan and earliness-tardiness is the objective function. In recent years, the nature-in...
متن کاملA cost-oriented model for multi-manned assembly line balancing problem
In many real world assembly line systems which the work-piece is of large size more than one worker work on the same work-piece in each station. This type of assembly line is called multi-manned assembly line (MAL). In the classical multi-manned assembly line balancing problem (MALBP) the objective is to minimize the manpower needed to manufacture one product unit. Apart from the manpower, othe...
متن کاملSpatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملA Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing Problem with SDST, Parallel Workstation and Learning Effect
Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid met...
متن کامل